Abstract
Abstract In this paper, the buckling equation and natural boundary conditions are derived with the aid of calculus of variations. The natural and geometric boundary conditions are used to determine the proper solution that represents the post-buckling configuration. Effects of friction and boundary conditions on the critical load of helical buckling are investigated. Theoretical results show that the effect of boundary conditions on helical buckling becomes negligible for a long pipe with dimensionless length greater than 5π. Velocity analysis shows that lateral velocity approaches infinity and lateral friction becomes dominant at the instant of buckling initiation. Thus, friction can significantly increase the critical load of helical buckling. However, once buckling is initiated, axial velocity becomes dominant again, and lateral friction becomes negligible for post-buckling behavior and axial load transfer analysis. Consequently, it is possible to seek an analytical solution for the buckling equation. To verify the proposed model and analytical results, the authors also conducted experimental studies. Experimental results support the proposed solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.