Abstract

In order to analyze the effects of friction layer thickness on the tribological performance of Ni3Al matrix self-lubricating composites containing Ag and MoO3 tabular crystals (Ni3Al-Ag-MoO3), the dry sliding tribological tests of Ni3Al-Ag-MoO3 against Si3N4 ball are undertaken under 4-16 N and 20-800 °C at 0.2 m/s. The results show that the friction layer thickness of Ni3Al-Ag-MoO3 is obviously affected by the applied loads and ambient temperatures. At 12 N-400 °C-0.2 m/s, Ni3Al-Ag-MoO3 exhibits excellent tribological performance, and the friction layer thickness obtained the maximum value of about 5 µm. Moreover, the simulation results, which based on the building of finite element models with different thickness of the friction layer, indicate that the decreased degree of the maximum equivalent stress in the substrate of Ni3Al-Ag-MoO3 with maximum thickness of friction layer is the larger one (about 39%), if compared to other thickness. It could avoid the generation of cracks and the spalling of subsurface materials during the dry sliding process, resulting in the excellent tribological performance. The results could be used to guide the selection of suitable working conditions and study the self-lubricating mechanisms of Ni3Al-Ag-MoO3 for having stable friction layer structure and excellent antifriction and antiwear performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.