Abstract

A numerical study of the effects of friction conditions on the formation of dead metal zone (DMZ) is presented. The friction conditions are classified as three different cases in the form of coefficient: (1) constant coefficient of friction, (2) “smooth” and “sharp” change of the friction coefficient and (3) time-dependent friction coefficient. These friction cases are numerically investigated using the finite element (FE) code ABAQUS/Explicit. A FE model based on the arbitrary-Lagrangian–Eulerian approach is developed to simulate the cutting process and investigate the influences of the friction conditions. The simulated results, for a wide range of friction conditions, are obtained, analyzed and compared with previously published experimental/numerical data. It has been found that the friction coefficient has a direct effect on the amount and shape of DMZ, the sharp change of coefficient has a larger effect on the DMZ formation than the smooth one and the formation of DMZ is more determined by the value of the friction coefficient than its duration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call