Abstract

AbstractFreshwater salinization is a widespread issue, but evidence of ecological effects on aquatic communities remains scarce. We experimentally exposed salt‐naive plankton communities of a north‐temperate, freshwater lake to a gradient of chloride (Cl−) concentration (0.27–1400 mg Cl L−1) with in situ mesocosms. Following 6 weeks, we measured changes in the diversity, composition, and abundance of eukaryotic 18S rRNA gene. Total phytoplankton biomass remained unchanged, but we observed a shift in dominant phytoplankton groups with increasing salt concentration, from Cryptophyta and Chlorophyta at lower chloride concentrations (< 185 mg Cl− L−1) to Ochrophyta at higher chloride concentrations (> 185 mg Cl− L−1). Crustacean zooplankton and rotifers were sensitive to the salinity, and disappeared at low chloride concentrations (< 40 mg Cl− L−1). While ciliates thrived at low chloride concentrations (< 185 mg Cl− L−1), fungal groups dominated at intermediate chloride concentrations (185–640 mg Cl− L−1), and only phytoplankton remained at the highest chloride concentrations (> 640 mg Cl− L−1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.