Abstract

Many animals use sound as a medium for detecting or locating potential prey items or predation threats. Northern saw-whet owls (Aegolius acadicus) are particularly interesting in this regard, as they primarily rely on sound for hunting in darkness, but are also subject to predation pressure from larger raptors. We hypothesized that these opposing tasks should favor sensitivity to low-frequency sounds arriving from many locations (potential predators) and high-frequency sounds below the animal (ground-dwelling prey items). Furthermore, based on the morphology of the saw-whet owl skull and the head-related transfer functions of related species, we expected that the magnitude of changes in sensitivity across spatial locations would be greater for higher frequencies than low frequencies (i.e., more “directional” at high frequencies). We used auditory-evoked potentials to investigate the frequency-specific directional sensitivity of Northern saw-whet owls to acoustic signals. We found some support for our hypothesis, with smaller-magnitude changes in sensitivity across spatial locations at lower frequencies and larger-magnitude changes at higher frequencies. In general, owls were most sensitive to sounds originating in front of and above their heads, but at 8 kHz there was also an area of high sensitivity below the animals. Our results suggest that the directional hearing of saw-whet owls should allow for both predator and prey detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call