Abstract

The present paper analytically reveals the effects of frequency mismatch on the stability of an equilibrium point within a pair of Stuart-Landau oscillators coupled by a delay connection. By analyzing the roots of the characteristic function governing the stability, we find that there exist four types of boundary curves of stability in a coupling parameters space. These four types depend only on the frequency mismatch. The analytical results allow us to design coupling parameters and frequency mismatch such that the equilibrium point is locally stable. We show that, if we choose appropriate frequency mismatches and delay times, then it is possible to induce amplitude death with strong stability, even by weak coupling. In addition, we show that parts of these analytical results are valid for oscillator networks with complete bipartite topologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.