Abstract
Nitrogen is an indispensable and limiting element for plant and microbial growth. To investigate the combined effects of salinity and freezing–thawing (FT) processes on soil inorganic nitrogen (SIN) transformation in seasonally freezing salinized farmland, laboratory incubation experiments were conducted under five soil salt content (SSC) treatments (0.08%, 0.25%, 0.35%, 0.50%, and 0.70%), four FT temperature treatments (C (5 °C), FT (−5 + 5 °C), FT (−10 + 5 °C), and FT (−15 + 5 °C)), and two soil water content (SWC) treatments (40% and 80% of maximum water holding capacity (WHC)). Ammonium (NH4+-N) and nitrate (NO3−-N) nitrogen were monitored at the first, second, fifth, and eighth incubation days. The FT processes increased relative NH4+-N content by 13%, 39%, and 77% with the decreasing of freezing temperature from −5 °C to −15 °C compared with C (5 °C) treatments, respectively. FT (−5 + 5 °C) and FT (−15 + 5 °C) treatments decreased the relative NO3--N contents by 4% and 6% compared with C (5 °C) treatments, respectively. Under FT treatments, the increment of relative NH4+-N content was higher in low-SSC treatments and lower in high-SSC treatments. The relationship between relative NO3–-N content and SSC gradually changed from a decrease in C (5 °C) to an increase in FT (−15+5 °C) treatments. SWC decreased NH4+-N content in high-SSC and low-freezing temperature treatments (SSC × freezing temperature < −2.5%· °C), while NH4+-N increased in low-SSC and unfrozen treatments. The variations of SIN/Rmin (nitrogen mineralization rate) were mostly affected by NO3–-N/Rnit (net nitrification rate) and NH4+-N/Ra (net ammonification rate) in C (5 °C) and FT treatments, respectively. Overall, the results suggested that enhanced salinity inhibited the effects of freezing temperature on NH4+-N and NO3−-N formation, respectively. The increase in SWC weakened the NH4+-N formation induced by the decrease in freezing temperature, and this function increased with the increase in salinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.