Abstract

The influence of freezing treatment on plasma membrane (PM) H+-ATPase was investigated using plasma membrane vesicles isolated from calluses from Chorispora bungeana Fisch. & C.A. Mey. by the discontinuous sucrose gradient centrifugation. Freezing treatment (−4 °C) for 5 d resulted in significant increases in the ATPase activity and the activity of p-nitrophenyl phosphate (PNPP) hydrolysis, decreases in the Km for ATP hydrolysis and PNPP hydrolysis, and the shift of optimal pH from 6.5 to 7.0. Also, the activity PNPP hydrolysis was less sensitive to vanadate after freezing treatment compared to control, while the inhibition of ATP hydrolysis by hydroxylamine was more sensitive. In addition, freezing treatment also decreased the activation effects of trypsin on PNPP hydrolysis, but increased the activation effects of lysophosphatidylcholine on ATP hydrolysis. Taken together, these results suggested that PM H+-ATPase might play an important role during adaptation to freezing and enhancing the frost hardness in C. bungeana.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call