Abstract

Vegetation concrete has been widely applied for the ecological restoration of bare steep slopes in short-term frozen and non-frozen soil regions in China. However, field experiments conducted in seasonally frozen soil regions have revealed decreases in the bulk density, nutrient content and vegetation coverage. This study aimed to clarify the evolution process and mechanism of the engineering properties of vegetation concrete under atmospheric freeze-thaw (F-T) test conditions. The physical, mechanical, and nutrient properties of vegetation concrete were investigated using six F-T cycles (0, 1, 2, 5, 10 and 20) and two initial soil water contents (18 and 22%). The results revealed decreases in the acoustic wave velocity and cohesive forces and an increase in the permeability coefficient of the vegetation concrete owing to F-T action. X-ray diffraction tests indicated that the decreased cohesive force was closely related to the overall decrease in the content of gelling hydration products in the vegetation concrete. Additionally, the contents of NH4+–N, PO43–P and K+ in the vegetation concrete increased, whereas that of NO3−–N decreased. The loss rates of these soluble nutrients increased, indicating that the nutrient retention capacity of the vegetation concrete had decreased. Specifically, the decreased nutrient retention capacity was mainly related to the disintegration and fragmentation of larger aggregates due to F-T action. This study provides theoretical support for future research on improving the anti-freezing capability of ecological slope protection substrates in seasonally frozen soil regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.