Abstract

The formation and near-field development of a wing-tip vortex under the influence of freestream turbulence were examined using flow visualization and hot-wire anemometry. A low turbulence freestream as well as two cases of grid turbulence with different intensities and length scales were considered. In all cases, the tip vortex was found to form from three smaller vortices, but the turbulence in its core was found to intensify with increasing freestream turbulence. The vortex trajectory was found to be unaffected by freestream turbulence, but the wing wake that was rolling up around the vortex was observed to have a curvature that decreased as freestream turbulence increased. The mean axial velocity distribution in the low-turbulence case was neither jetlike nor wakelike but had an annular shape. Time-averaged velocity profiles measured in the turbulent freestream cases were wakelike, and it was inferred that the instantaneous profiles would be significantly affected by vortex meandering. Mean circumferential velocity distributions in the vortex core displayed self-similar developments in all cases examined. Finally, it was found that the apparent diffusion in the shear layer shed from the wing increased with increasing freestream turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call