Abstract
The purpose of the current study was to explore the immunomodulatory effects of different adjuvants combined with inactivated vaccines under Aeromonas veronii TH0426 infection in crucian carp. This study explored the best conditions for A. veronii as an inactivated vaccine, and included an animal safety test. Furthermore, we expressed the flagellin FlaA of the A. veronii TH0426 strain for use as an adjuvant supplemented in the diet. Crucian carp were fed 12 different experimental diets for 35 days, including the administration of 10 different adjuvants and inactivated vaccine combinations (50% aluminum hydroxide gel and inactivated vaccine combination, and inactivated vaccine with 20%, 30%, or 50% glucan, astragalus polysaccharide or flagellin), inactivated vaccine alone, and PBS control without adjuvant and inactivated vaccine. After the 42 day feeding trials, the fish were challenged with A. veronii TH0426, and the survival rate over 14 days was recorded. In addition, flagellin FlaA can be expressed normally in large amounts. All experimental groups produced higher levels of IgM serum titres than the control group in the different feeding cycles. Moreover, the activity of serum ACP, AKP, SOD, and LZM, and the expression of inflammatory factors were significantly increased in the experimental groups compared with the control group. The results of qRT-PCR analysis showed that the transcription levels of the IL-10, IL-1β, IFN-γ and TNF-α genes in heart, liver, spleen and kidney tissues were significantly enhanced by adjuvant treatment, indicating that the addition of adjuvants can significantly promote the body's inflammatory response. In addition, the phagocytic activity of leukocytes in each adjuvant treated group was significantly enhanced compared to that in the groups without adjuvant. After the A. veronii challenge, the survival rate of all adjuvant-treated groups was significantly higher than that of the control group, and the 50% flagellin adjuvant group had the highest rate of 78.37%. Overall, our findings strongly indicate that adjuvants not only significantly improve the body's immunity, but also exhibit a strong anti-infection ability. Importantly, this work provides a new perspective for the prevention and control of aquaculture diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.