Abstract

One of the approaches to improve cryotolerance in lipid-rich embryos is to modify their lipidome in vitro. This work is aimed to study the effects of forskolin exposure on the in vitro embryo development of the domestic cat and to evaluate how the change in lipid content affects the cryopreservation results. In vitro-derived embryos were cultured with 10 μM forskolin from the 2-cell stage for 24 h or 96/168 h to the morula/blastocyst stage. Some of the embryos treated with forskolin for 24 h were cryopreserved with slow freezing, the other ones were used to characterize their developmental rates and the amount of intracellular lipids. The in vitro exposure to forskolin had a positive effect on the embryo development, as more embryos developed to the morula stage in the forskolin-treated group (92.9%) compared to the controls (64.7%) after 120 h of in vitro culture (IVC). Nile Red staining revealed a reduced amount of intracellular lipids in the forskolin-treated embryos. The percentage of embryos developed to the morula stage was lower in the frozen-thawed embryos not treated with forskolin (54.5%), but not in the frozen-thawed forskolin-treated group (63.6%) as compared to non-frozen controls (80.8%). Thus, the exposure of embryos to forskolin in vitro reduced the level of intracellular lipids and affected embryo development before and after cryopreservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call