Abstract

An objective of this study was to determine the effects of increasing contents of rumen undegradable protein (RUP) from formalin treated soy bean (FSBM) on rumen functions. Four rumen canulated non-lactating cows were randomly allocated to total mixed rations (TMR) containing different proportions of soy bean meal (SBM) and FSBM. Of rumen fermentation characteristics, concentrations of ruminal fluid ammonia and molar proportions of isoacids decreased with increasing contents of RUP in diets (p 0.05). The density of protozoa particularly small Entodinium sp. in ruminal fluid was higher in animal fed TMR containing SBM:FSBM (34:66) and FSBM than those fed TMR containing SBM:FSBM (66:34) and SBM (p<0.01). Total viable count, and net microbial protein synthesis as indicated by purine derivatives in urine increased with increasing contents of RUP from FSBM (p<0.01). It can be concluded that a reduction in net microbial protein synthesis in the rumen with increasing contents of RUP in the diet can be due to the reduction of preformed protein available for microbial growth as well as an increased turnover rate of microbial cells by predatory activity of protozoa. (Asian-Aust. J. Anim. Sci. 2002. Vol 15, No. 10 : 1439-1444)

Highlights

  • Insufficient supply of protein to dairy cows intestines for digestion and absorption is one of the major problems for dairy production under tropical conditions (Leng, 1982b)

  • The substitution of rumen undegradable protein (RUP) for rumen degradable protein (RDP) can reduce the microbial protein entering the host intestines, which is presumably due to the lack of supply of peptides and amino acids to the rumen microbes (Clark et al, 1992)

  • Voluntary intake was not influenced by the contents of rumen undegradable protein (RUP) from Formalin treated soy bean meal (FSBM) in the diet (p>0.05)

Read more

Summary

Introduction

Insufficient supply of protein to dairy cows intestines for digestion and absorption is one of the major problems for dairy production under tropical conditions (Leng, 1982b). Rate of starch digestion in the rumen is the major factor controlling the energy available for microbial growth (Oldham, 1984), while an adequate supply of nitrogenous sources (ammonia, peptides and amino acids) in the rumen will increase microbial growth efficiency (Leng, 1982b). The substitution of rumen undegradable protein (RUP) for rumen degradable protein (RDP) can reduce the microbial protein entering the host intestines, which is presumably due to the lack of supply of peptides and amino acids to the rumen microbes (Clark et al, 1992).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.