Abstract

As part of the long-term soil productivity study in central British Columbia, we examined the effect of soil compaction and organic matter removal on trembling aspen (Populus tremuloides Michx.) litter decomposition. We compared three levels of organic matter removal (stem-only, whole-tree harvest, and scalped mineral soil) and two levels of compaction (no compaction and heavy compaction) in a factorial design replicated as blocks on three sites. Whole-tree harvesting significantly increased litter decomposition rates compared to stem-only (by 36%) and scalped (by 41%) treatments. Soil compaction had inconsistent effects on decomposition rates (k) for forest floor and scalped treatments and, overall, did not significantly affect litter decomposition rates. Litter on scalped plots had higher rates of nutrient translocation than litter on forest floors. We found the treatments altered soil heat sums, so changes in temperatures at the soil surface might be partly responsible for the changes in decomposition rates. We could not detect differences in soil mesofauna populations collected from the litter bags, so treatment effects on fauna probably had less influence than microclimate on decomposition rates. The effects of these early changes in litter decomposition on biological productivity will be part of the ongoing long-term soil productivity study. Key words: Litter decomposition, soil compaction, scalping, whole-tree harvest, nutrient translocation

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call