Abstract

Abstract The effect of land-use change on the flood frequency curve (FFC) in a natural catchment is analysed. To achieve this, a simple methodology for the derivation of FFCs in land-use change scenarios is proposed. The adopted methodology, using a stochastic model in Monte Carlo simulation of FFCs, was found to provide a useful framework for detecting changes in flood magnitudes in both pre- and post-fire conditions. In particular, the importance of the antecedent soil moisture condition in the determination of the flood frequency distribution was analysed. The analysis of FFCs for pre- and post-fire conditions shows an increase in the average value of Curve Number and a decrease in the catchment time lag. The derivation of FFCs shows a clear increase in flood quantiles. For the post-fire conditions, the FFC exhibits higher quantiles of the peak discharges showing a reduction in frequency of occurrence. This variation is more significant for low-return period quantiles than for high-return period quantiles. The results of the catchment studies reported here support the hypothesis that the hydrological response of the watershed changes as a result of fire, especially during the first years following a fire event.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call