Abstract

Picea is one of the most dominant conifer genera in the Northern Hemisphere and includes species which require coarse woody debris (CWD) as a seedbed for regeneration. To understand the future of forest distribution under global climate change, it is important to investigate regeneration mechanisms in Picea forests on the borders of its distribution. In the present study, we evaluated the biotic factors affecting the establishment of Picea jezoensis var. hondoensis seedlings on CWD in one of its southernmost populations in central Japan, where there is dieback of Picea forest. Amplicon sequencing of the fungal ITS1 region of rDNA obtained from wood samples showed that forest dieback increased the frequency of brown rot fungi in CWD. The frequency of brown-rotted wood, in which wood holocellulose is decayed, increased with dieback intensity. The domination of brown-rotted wood in dieback forests was negatively associated with bryophyte cover which was positively associated with Picea seedling density. Forest dieback itself also had other strong negative effects on bryophytes. Thus, linkages between dead wood and spruce seedlings via bryophytes had collapsed after the dieback event, which may partly be a reason that the spruce forest shifted to and is staying as open grassland. • The frequency of brown rot fungi increased with forest dieback intensity. • Brown rotted wood was negatively associated with bryophyte cover. • Bryophyte cover was positively associated with Picea seedling density on deadwood. • Forest dieback may indirectly affect Picea seedlings by altering fungal community.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call