Abstract

The aim of the present study was to investigate the effects of the forebody geometry on the asymmetric side forces, separations and vortex shedding behind the vehicles at high angles of attack. It reports wall pressure measurements to describe the asymmetric vortex system developing over an inclined cylindrical body exposed to a low-speed freestream.

Highlights

  • The target accuracy of missiles is a critical factor in their effectiveness

  • Starting from the stagnation point (φ = 0 or 360 degrees), the flow accelerates in a laminar boundary layer, where the Cp remains positive up to the roll angles φ = ± 40 degrees (-40 degrees correspond 320 degrees)

  • We can conclude that towards the aft of the body, due to increase in velocity, the characteristics of the cross-flow boundary layer change from laminar to turbulent

Read more

Summary

Introduction

The target accuracy of missiles is a critical factor in their effectiveness. the intended target may not be often known prior to the launch and, retargetability nowadays has become an essential system attribute. Rapid delivery to the path from the launch point to the target demands an increased maneuverability, leading to flights at high angles of attack above 40 degrees [1]. Under these conditions, the flow around the vehicle is characterized by the presence of separations and vortex shedding [2,3], which produce large asymmetric side forces [4,5]. At low angles of attack (α ≤ 5 degrees), the flow remains attached to the body except for the thickening of the boundary layer occurring on the lee side For such flows, the lift force varies linearly with α.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.