Abstract
The ability of a quadruped to apply propulsive ground reaction forces (GRF) during rapid acceleration may be limited by muscle power, foot traction or the ability to counteract the nose-up pitching moment due to acceleration. Because the biomechanics of acceleration change, both throughout the stride cycle and over subsequent strides as velocity increases, the factors limiting propulsive force production may also change. Depending on which factors are limiting during each step, alterations in fore-aft body mass distribution may either increase or decrease the maximum propulsive GRF produced. We analyzed the effects of experimental alterations in the fore-aft body mass distribution of dogs as they performed rapid accelerations. We measured the changes in trunk kinematics and GRF as dogs accelerated while carrying 10% body mass in saddlebags positioned just in front of the shoulder girdle or directly over the pelvic girdle. We found that dogs applied greater propulsive forces in the initial hindlimb push-off and first step by the lead forelimb in both weighted conditions. During these steps dogs appear to have been limited by foot traction. For the trailing forelimb, propulsive forces and impulses were reduced when dogs wore caudally placed weights and increased when dogs wore cranially placed weights. This is consistent with nose-up pitching or avoidance thereof having limited propulsive force production by the trailing forelimb. By the second stride, the hindlimbs appear to have been limited by muscle power in their ability to apply propulsive force. Adding weights decreased the propulsive force they applied most in the beginning of stance, when limb retractor muscles were active in supporting body weight. These results suggest that all three factors: foot traction, pitching of the body, and muscle power play roles in limiting quadrupedal acceleration. Digging in to the substrate with claws or hooves appears to be necessary for maximizing propulsion in the initial hindlimb push-off and first forelimb step. Shifting the center of mass forward, as occurred with the loss of the large and heavy tail in the evolution of mammals, is likely to increase the contribution of the forelimbs to acceleration. Hindlimb muscle power appears to play a greater role in limiting acceleration than does forelimb muscle power. As such, we might expect animals built for rapid acceleration to have an increased ratio of hindlimb to forelimb muscle mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.