Abstract

Our study investigated the effects of, and interactions between, forage particle size, level of dietary ruminally fermentable carbohydrate (RFC), and level of dietary starch on performance, chewing activity, and ruminal pH for dairy cows fed one level of dietary NDF. Twelve cows (48 DIM) were assigned to six treatments in a replicated 6×6 Latin square. Treatments were arranged in an incomplete 2×2×2 factorial design. Factors were: dry cracked shelled corn (DC, low RFC) or ground high-moisture corn (HMC; high RFC), finely chopped or coarse silage, and alfalfa silage as the only forage or a 50:50 ratio (DM basis) of alfalfa and corn silage. Diets combining HMC with only alfalfa silage were not included in the experiment. Diets were fed for ad libitum intake as a TMR with a concentrate:forage ratio of 61:39. Diets based on only alfalfa silage and diets based on a mix of alfalfa and corn silage averaged 18.6 and 15.8% CP, 25.8 and 24.7% NDF, 17.7 and 14.8% ADF, and 29.1 and 37.3% starch, respectively. Mean particle sizes were 5.3, 2.7, 5.6, and 2.8mm for coarse alfalfa, fine alfalfa, coarse corn silage, and fine corn silage, respectively. Decreasing forage particle size decreased DMI (23.3 vs. 21.6kg) and organic matter intake (22.0 vs. 20.2kg). Increasing RFC decreased DMI (22.8 vs. 21.0kg) and organic matter intake (21.5 vs. 20.0kg). Decreasing forage particle size increased energy-corrected milk for alfalfa based diets (34.9 vs. 37.4kg). Percentage of milk fat decreased with decreasing forage particle size (3.07 vs. 2.90%) and increased level of RFC (3.04 vs. 2.57%). Percentage of protein increased when corn silage partially replaced alfalfa silage (2.84 vs. 2.90%) but decreased when HMC replaced DC (2.90 vs. 2.84%). Apparent total tract digestibility of DM (66.7 vs. 68.5%), OM (65.9 vs. 70.7%), and starch (88.9 vs. 93.4%) increased when level of RFC was increased. Increasing level of RFC decreased mean ruminal pH from 5.82 to 5.67 and decreased minimum pH. Hours per day at which pH was <5.8, and area <5.8, increased when corn silage partially replaced alfalfa silage (2.6 vs. 4.4h and 8.9 h×pH vs. 11.4 h×pH) and decreased further when level of RFC was increased (4.4 vs. 6.4h and 11.4 h×pH vs. 14.3 h×pH). Decreasing forage particle size in HMC diets increased hours and area <5.8, but for DC diets, the effect of forage particle size depended on forage source. Interactions were found between level of physically effective fiber, forage source, and level of RFC on production and pH, complicating the inclusion of these effects in dairy ration formulation and evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.