Abstract

Distance running is one of the most popular physical activities, and running-related injuries (RRIs) are also common. Foot strike patterns have been suggested to affect biomechanical variables related to RRI risks. To determine the effects of foot strike techniques on running biomechanics. The databases of Web of Science, PubMed, EMBASE, and EBSCO were searched from database inception through November 2018. The initial electronic search found 723 studies. Of these, 26 studies with a total of 472 participants were eligible for inclusion in this meta-analysis. Systematic review and meta-analysis. Level 4. Means, standard deviations, and sample sizes were extracted from the eligible studies, and the standard mean differences (SMDs) were obtained for biomechanical variables between forefoot strike (FFS) and rearfoot strike (RFS) groups using a random-effects model. FFS showed significantly smaller magnitude (SMD, -1.84; 95% CI, -2.29 to -1.38; P < 0.001) and loading rate (mean: SMD, -2.1; 95% CI, -3.18 to -1.01; P < 0.001; peak: SMD, -1.77; 95% CI, -2.21 to -1.33; P < 0.001) of impact force, ankle stiffness (SMD, -1.69; 95% CI, -2.46 to -0.92; P < 0.001), knee extension moment (SMD, -0.64; 95% CI, -0.98 to -0.3; P < 0.001), knee eccentric power (SMD, -2.03; 95% CI, -2.51 to -1.54; P < 0.001), knee negative work (SMD, -1.56; 95% CI, -2.11 to -1.00; P < 0.001), and patellofemoral joint stress (peak: SMD, -0.71; 95% CI, -1.28 to -0.14; P = 0.01; integral: SMD, -0.63; 95% CI, -1.11 to -0.15; P = 0.01) compared with RFS. However, FFS significantly increased ankle plantarflexion moment (SMD, 1.31; 95% CI, 0.66 to 1.96; P < 0.001), eccentric power (SMD, 1.63; 95% CI, 1.18 to 2.08;P < 0.001), negative work (SMD, 2.60; 95% CI, 1.02 to 4.18; P = 0.001), and axial contact force (SMD, 1.26; 95% CI, 0.93 to 1.6; P < 0.001) compared with RFS. Running with RFS imposed higher biomechanical loads on overall ground impact and knee and patellofemoral joints, whereas FFS imposed higher biomechanical loads on the ankle joint and Achilles tendon. The modification of strike techniques may affect the specific biomechanical loads experienced on relevant structures or tissues during running.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.