Abstract
Folylpolyglutamate synthase (FPGS) plays a critical role in intracellular folate homeostasis. FPGS-induced polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence FPGS modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression and aberrant DNA methylation is mechanistically linked cancer development. We investigated whether FPGS modulation would affect global and gene-specific promoter DNA methylation with consequent functional effects on gene expression profiles in HCT116 colon and MDA-MB-435 breast cancer cells. Although FPGS modulation altered global DNA methylation and DNA methyltransferases (DNMT) activity, the effects of FPGS modulation on global DNA methylation and DNMT activity could not be solely explained by intracellular folate concentrations and content of long-chain folylpolyglutamates, and it may be cell-specific. FPGS modulation influenced differential gene expression and promoter cytosine-guanine dinucleotide sequences (CpG) DNA methylation involved in cellular development, cell cycle, cell death and molecular transport. Some of the altered gene expression was associated with promoter CpG DNA methylation changes. In both the FPGS-overexpressed HCT116 and MDA-MB-435 cell lines, we identified several differentially expressed genes involved in folate biosynthesis and one-carbon metabolism, which might in part have contributed to the observed increased efficacy of 5-fluorouracil in response to FPGS overexpression. Our data suggest that FPGS modulation affects global and promoter CpG DNA methylation and expression of several genes involved in important biological pathways. The potential role of FPGS modulation in DNA methylation and its associated downstream functional effects warrants further studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.