Abstract
Salinity stress, like many other abiotic stresses, limits the plant growth. Nanotechnology has been globally accepted as a modern, advanced technology that could enhance research in many fields. In order to investigate the effect of Nano-ZnO and salinity stress on morpho-physiological characteristics of Salvia leriifolia Benth., a factorial experiment was conducted as completely randomized design with three replications, the treatments were three nano-ZnO concentrations (0, 2, 4 mg/l ) and five salinity levels (0, 50, 100, 150, 200 mM NaCl) in the greenhouse of Mashhad Islamic Azad University in 2019. The results showed that salinity stress had a significant effect on morpho-physiological indices as well as mineral nutrients. It was also found that 4 mg/l nano-ZnO concentration at the mild salinity stress (50 and 100 mM) increased leaf and root length, leaf and root soluble protein, and proline content compared to the control. Salinity stress also decreased the concentration of K+, Ca2+, Mg2+, Zn2+, Cu2+, P, and K+/Na+ ratio in roots and leaves, while Na+ content increased significantly during stress in both organs. Nevertheless, the application of nano-ZnO increased the content of Zn2+, Ca2+, K+, and K+/Na+ ratio in leaves and roots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.