Abstract

Although graphene oxide (GO) has been widely used to enhance soil quality and crop yield, there is currently little information regarding the effects of foliar application of GO on cadmium (Cd) toxicity to plants. In this study, we investigated the response to GO in lettuce cultivated under Cd stress in hydroponic conditions. Lettuce was grown from seeds in a nutrient solution supplemented with 2 mg/L Cd and the leaves were sprayed with 0, 30, and 60 mg/L GO. The results indicated that application of 30 mg/L GO significantly increased the total length, surface area, average diameter, and hair number of lettuce roots, and effectively alleviated the negative effects of Cd on root growth. Furthermore, foliar application of 30 mg/L GO, but not 60 mg/L GO, significantly improved the quality of lettuce, including reduction in Cd accumulation in leaves and roots and increase in soluble sugar, protein, and vitamin C content. Transmission electron microscopy revealed that GO nanoparticles, which entered the leaves and were subsequently transported to the roots via the vascular system (phloem), reduced the damaging effect of Cd on cellular organelles, including the cell wall and membrane, chloroplasts, and starch granules. The effect may be attributed to the absorption of GO by lettuce cells, where it fixed Cd2+, thus reducing Cd2+ bioavailability, or to the improvement of Cd tolerance through regulation of lettuce metabolic pathways. Gaussian simulation analysis revealed that Cd caused significant changes in the GO molecule, resulting in detachment of an epoxy group from the GO carbon ring and breakage of OH bonds in hydroxyl groups, whereupon the oxygen freed from the OH bond formed a new bond with Cd. Collectively, these results indicate that foliar application of 30 mg/L GO can enhance the tolerance of lettuce to Cd, promote plant growth, and improve nutritional quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call