Abstract

In this study, samples of dental porcelain bodies have been made by using the materials collected from selected deposits employing different mixing proportions of clay, quartz and feldspar. Dental porcelain ceramics have been successfully fabricated by using the sintering technique together with some Na 2 CO 3 additive. The dental porcelain powder has been pressed into pellets at first and subsequently sintered at 700, 800, 900, 1000 and 1100 °C for 2 h. The physical and mechanical properties of the prepared samples have been investigated. The sintering behavior of the fired samples has been evaluated by bulk density, linear shrinkage, water absorption and apparent porosity measurements. This study includes the evaluation of the Vickers’s microhardness by microhardness tester. Phase analysis and microstructural study have been performed by XRD and optical microscope respectively. Optical properties have been investigated using UV-visible spectroscopy. Influence of firing conditions on leucite formation, densification and microstructural development of the sintered samples has been investigated. It has been found that the choice of sintering temperature is one of the key factors in controlling leucite crystallization in dental porcelain ceramics. It has also been found that the flux concentration of material and the effect of temperature on preparation of dental porcelain contribute to the firing shrinkage and hardness, which has been found to increase with the increase of treatment temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.