Abstract

[reaction: see text] The adiabatic electron affinity (EA(ad)) of the CH(3)-C[triple bond]C(*) radical [experiment = 2.718 +/- 0.008 eV] and the gas-phase basicity of the CH(3)-C[triple bond]C:(-) anion [experiment = 373.4 +/- 2 kcal/mol] have been compared with those of their fluorine derivatives. The latter are studied using theoretical methods. It is found that there are large effects on the electron affinities and gas-phase basicities as the H atoms of the alpha-CH(3) group in the propynyl system are substituted by F atoms. The predicted electron affinities are 3.31 eV (FCH(2)-C[triple bond]C(*)), 3.86 eV (F(2)CH-C[triple bond]C(*)), and 4.24 eV (F(3)C-C[triple bond]C(*)), and the predicted gas-phase basicities of the fluorocarbanion derivatives are 366.4 kcal/mol (FCH(2)-C[triple bond]C:(-)), 356.6 kcal/mol (F(2)CH-C[triple bond]C:(-)), and 349.8 kcal/mol (F(3)C-C[triple bond]C:(-)). It is concluded that the electron affinities of fluoropropynyl radicals increase and the gas-phase basicities decrease as F atoms sequentially replace H atoms of the alpha-CH(3) in the propynyl system. The propargyl radicals, lower in energy than the isomeric propynyl radicals, are also examined and their electron affinities are predicted to be 0.98 eV ((*)CH(2)-C[triple bond]CH), 1.18 eV ((*)CFH-C[triple bond]CH), 1.32 eV ((*)CF(2)-C[triple bond] CH), 1.71 eV ((*)CH(2)-C[triple bond]CF), 2.05 eV ((*)CFH-C[triple bond]CF), and 2.23 eV ((*)CF(2)-C[triple bond]CF).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.