Abstract

The thermoelectric properties of Sr0.61Ba0.39Nb2O6 ceramics, doped with different contents of fluorine at the oxygen sites, were investigated in the temperature range of 323 to 1073 K. The electrical resistivity is reduced significantly after fluorine doping. However, the magnitudes of electrical resistivity, Seebeck coefficient (S), and slope of S at high temperatures (dS/dT) vary non-monotonically with increasing doping contents, indicating that doped fluorine ions not only act as electron donors, but also influence band structure. The lattice thermal conductivity decreases when fluorine ions are slightly doped, and increases with increasing fluorine content because of the increasing average grain size. The thermoelectric performance is enhanced by slight fluorine doping due to the increase of the power factor and the reduction of thermal conductivity. The thermoelectric figure of merit reaches maximum value (0.21 at 1073 K) in the Sr0.61Ba0.39Nb2O5.95F0.05 sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.