Abstract

Fluoride ions are the only aggressive ions for the protective oxide layer of titanium and titanium alloys. Thus their presence may possibly start a localized corrosive degradation by pitting and crevice corrosion processes. Since hygiene products like toothpastes and prophylactic gels contain fluoride ions, the present study has been completed to evaluate the effect of fluoride ions on titanium and dental alloys used, for example, as dental implants and superstructures. Two different milieu based on the Fusayama artificial saliva and an electrolyte solution containing NaCl, with and without fluoride ions, have been used for the electrochemical tests, in a pH range of 6.15 to 3.0. Open circuit potentials, potentiodynamic curves, Tafel slopes, galvanic couplings and crevice potentials are the electrochemical procedures selected for this work. Based on the experimental results obtained with these procedures, the mixed potential theory was applied to predict couple potentials and couple currents. It has thus been shown that: (a) with and without fluoride ions, galvanic currents are weak (10E−7 to 10E−8 A cm -2) within a pH range of 6.15 to 3.5; (b) titanium submitted to anodic polarization in an electrolyte, even one containing fluoride, merely develops an oxide layer and does not corrode within that same pH range of 6.15 to 3.5; (c) in confined areas where fluoride ions are present, titanium and the dental alloys tested undergo a corrosive process, in the form of crevice and pitting, as soon as the pH drops below 3.5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.