Abstract

Amine-based technologies are emerging as the prime contender for postcombustion CO2 capture. However, concerns have arisen over the health impacts of amine-based CO2 capture associated with the release of nitrosamines and nitramines, which are byproducts from the reactions between flue gas NOx and solvent amines. In this study, flue gas compositions were systematically varied to evaluate their effects on the formation of nitrosamines and nitramines in a lab-scale CO2 capture reactor with morpholine as a model solvent amine. The accumulation of N-nitrosomorpholine in both the absorber and washwater increased linearly with both NO and NO2 for concentrations up to ∼20 ppmv. These correlations could be extrapolated to estimate N-nitrosomorpholine accumulation at extremely low NOx levels (0.3 ppmv NO2 and 1.5 ppmv NO). NO played a particularly important role in driving N-nitrosomorpholine formation in the washwater, likely following partial oxidation to NO2 by O2. The accumulation of N-nitromorpholine in both the absorber and washwater positively correlated with flue gas NO2 concentration, but not with NO concentration. Both N-nitrosomorpholine and N-nitromorpholine accumulated fastest in the absence of CO2. Flue gas humidity did not affect nitrosamine accumulation in either the absorber or the washwater unit. These results provide a basis for estimating the effects of flue gas composition on nitrosamine and nitramine accumulation in postcombustion CO2 capture systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.