Abstract

Excessive flow turbulence poses a threat to the development of drifting fish eggs, leading to mortality or developmental malformations and ultimately depleting early fish resources. Currently, there is a scarcity of quantitative studies investigating the effects of flow turbulence on the entire process of drifting fish egg development, from fertilized egg division to hatching. In this paper, the effects of different flow turbulence conditions (FTCs), including turbulent kinetic energy and shear stress, and action times on different stages of fish egg development were quantitatively explored using a transverse-oscillating-grids turbulence tank. Empirical formulas were established to predict the proportion of normal fish egg development under different FTCs within a selected range. The research findings provide a quantitative basis for protecting early fish resources, mitigating the biological invasion of specific fish, constructing fish-breeding facilities, and ensuring safe transfer and transportation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call