Abstract

The effects of flow coefficient on the gas flow and loss characteristics inside the high-pressure turbine is investigated using a numerical simulation. In this paper, the midspan of the first stator of the “Lisa” 1.5 stage high-pressure turbine is used as a prototype to obtain different flow coefficients by changing the stagger angle and the exit angle. The boundary conditions of all cases are consistent with the experimental data of “Lisa”. The results show that the flow coefficient is decreased from 0.478 to 0.374 as the stagger angle is varied from 44.2° to 56.2° and from 0.630 to 0.341 as the exit angle is varied from 63° to 75°. Large stagger angle or large exit angle both cause an increase in turbine aerodynamic losses. The similarity between the two is that both cause enhanced effect of transverse secondary flow in the passage. The difference is that with large stagger angle, the adverse pressure gradient affects a large area, resulting in large boundary layer losses; with large exit angle, the passage vortex is weakened but with a large influence area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call