Abstract

ABSTRACT The time-dependent response of pore water pressures during floods largely determines the safety against geotechnical failure of dikes, which is deemed to be highly dependent on the uncertain shape (duration, maximum height, etc.) of the flood discharge wave. This paper derives the uncertainty of flood wave shape from a database of precalculated hydrographs (GRADE) and evaluates the effect of shape variability on probabilistic safety estimates of slope stability, using a modelling chain consisting of a transient hydrological model (MODFLOW) and a probabilistic dike slope safety assessment (FORM). Accounting for flood wave uncertainty with transient groundwater flow generally leads to higher reliability estimates for slope stability, compared to the steady-state groundwater condition and other conservative assumptions, but to lower reliability estimates compared to a single design flood wave. Furthermore, the uncertainty of the flood wave shape can be as important as the uncertainty in geotechnical properties. For landside dike slope stability, the volume of the flood wave is the most important factor, while riverside slope stability depends mainly on the total water level drop after the peak. These two waveform characteristics are thus essential uncertainties to consider in probabilistic assessments of dike safety with transient groundwater conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call