Abstract

This paper focuses on a simulation-based experimental study of the effects of routing flexibility, sequencing flexibility, and part sequencing rules on the performance of a typical FMS. Three routing flexibility levels, five sequencing flexibility levels, and four scheduling rules for part sequencing decision are considered for detailed investigation. The system work load characterised by the mean interarrival time of parts has been set at different levels. The performance of the FMS is evaluated using various measures related to flow time and tardiness of parts. The simulation results are subjected to statistical analysis. Multiple regression-based metamodels have been developed using the simulation results. The analyses of results reveal that deterioration in system performance can be minimised substantially by incorporating either routing flexibility or sequencing flexibility or both. However, the benefits of either of these flexibilities diminish at higher flexibility levels. When flexibility exists, part sequencing rules such as the earliest due date and earliest operation due date provide a better performance for all the measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.