Abstract
Biodegradable edible films have the potential to either replace or reduce the amount of synthetic packaging utilized by the food industry. The overall goal of this research was to investigate the effect of flax seed oil concentration (1–10%) on the mechanical, moisture barrier and swelling properties of soy protein isolate (SPI) (5.0% w/w SPI, 40% w/w glycerol) emulsion-based films. Film forming solutions showed a bimodal oil droplet distribution with peak sizes occurring at <10 and ~100μm. As the oil content increased, the size distribution shifted towards smaller droplet sizes. An equal size ratio was noted at the 5.0% oil content level. All film forming solutions were pseudoplastic in nature, where viscosity increased from 18 to 58mPa (at 1s−1) as a function of oil content (3% to 10%). Tensile strength of formed films reached a maximum at 5.35MPa at the 5% w/w oil level, whereas tensile elongation increased from 11.3% to 22.2% with increasing oil content. Puncture strength and deformation, as well as water vapour permeability was relatively independent of the oil content. Moisture content and swelling properties of formed films were found to both decrease from 22.8% to 18.7%, and from 3114% to 1209%, respectively as the oil content was raised from 1 to 10%, and films became darker, redder and more yellow in colour as the percentage of flax seed oil increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.