Abstract

This experimental study explored the influence of global/local flame behaviors on direct combustion noise produced by a lean-premixed gaseous low-swirl turbulent jet flame, with a focus on the mechanism resulting in characteristic peaks in combustion noise spectra. Ten kilohertz chemiluminescence and OH planar laser-induced fluorescence (OH-PLIF) imaging were used to study the spatiotemporal evolution of heat release and flame structure fluctuations, respectively, whereas 2-D particle image velocimetry (2-D PIV) measurements at 4 Hz were applied to study the mean-based relation between the velocity/vorticity fields and flame structures. Pressure and global heat release fluctuation measurements carried out alongside these optical diagnostics revealed pronounced double peaks in both combustion noise and global heat release fluctuation spectra at global equivalence ratios of . Spectral proper orthogonal decomposition of the chemiluminescence and OH-PLIF images revealed that the first peak in the noise spectra to be caused by flame oscillations over nearly the entire flame region, whereas the secondary peak was attributed to periodically generated vortical flame structures near the downstream side of the flame boundary. The 2-D PIV results suggest that vortical flame structures are likely generated by the interaction between the flame and the inner/outer shear layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call