Abstract
Consumer growth and reproductive capacity are direct functions of diet. Strongylocentrotid sea urchins, the dominant herbivores in California kelp forests, strongly prefer giant kelp (Macrocystis pyrifera), but are highly catholic in their ability to consume other species. The biomass of Macrocystis fluctuates greatly in space and time, and the extent to which urchins can use alternate species of algae or a mixed diet of multiple algal species to maintain fitness when giant kelp is unavailable is unknown. We experimentally examined the effects of single and mixed species diets on consumption, growth and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. Urchins were fed single species diets consisting of one of four common species of macroalgae (the kelps Macrocystis pyrifera and Pterygophora californica, and the red algae Chondracanthus corymbiferus and Rhodymenia californica (hereafter referred to by genus)) or a mixed diet containing all four species ad libitum over a 13-week period in a controlled laboratory setting. Urchins fed Chondracanthus, Macrocystis and a mixed diet showed the highest growth (in terms of test diameter, wet weight and jaw length) and gonad weight, while urchins fed Pterygophora and Rhodymenia showed the lowest. Urchins consumed their preferred food, Macrocystis, at the highest rate when offered a mixture, but consumed Chondracanthus or Macrocystis at similar rates when the two algae were offered alone. The differences in urchin feeding behavior and growth observed between these diet types suggest the relative availability of the algae tested here could affect urchin populations and their interactions with the algal assemblage. The fact that the performance of urchins fed Chondracanthus was similar or higher than those fed the preferred Macrocystis suggests that the availability of the former could could sustain growth and reproduction of purple sea urchins during times of low Macrocystis abundance as is common following large wave events.
Highlights
Sea urchins are dominant grazers in many benthic marine systems around the world and can exert a strong top-down influence on community structure (Lawrence, 1975)
Sea urchins fed Chondracanthus, Macrocystis and mixed diets exhibited the highest test growth, jaw growth, wet weight gain, and gonad weight, with no significant differences between these three diets (Fig. 1)
Urchins fed Pterygophora exhibited significantly lower test growth compared to those fed Chondracanthus and Macrocystis diets, but had jaw growth and gonad weight that were not statistically different from either of them (Fig. 1)
Summary
Sea urchins are dominant grazers in many benthic marine systems around the world and can exert a strong top-down influence on community structure (Lawrence, 1975). Increased knowledge of the effect of diet on sea urchin consumption, growth and reproduction should lead to a better understanding of when and where they can have strong ecosystem effects. The feeding rates, food selectivity, growth and reproduction of a variety of species of sea urchins vary with changes in quantity and types of available foods. This variation is due to consumer food preferences and the digestibility, absorption efficiency and composition of available food (Lawrence, 1975). A comprehensive understanding of the interactions between sea urchins and macroalgal assemblages in any system requires knowledge of the factors that affect sea urchin feeding behavior and performance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.