Abstract

Dietary n-3 fatty acids (FAs) found in fish oils markedly lower plasma triglyceride (TG) and very low density lipoprotein (VLDL) levels in both normal and hypertriglyceridemic subjects. The present study examined the mechanism of this effect. Ten subjects with widely different plasma triglyceride levels (82 to 1002 mg/dl) were fed metabolically controlled diets containing 20% fat. The control diet contained a blend of cocoa butter and peanut oil (P/S = 0.8). The test diet contained fish oil (P/S = 1.1) and provided 10-17 g of n-3 FAs per day (depending on calorie intake). After 3 to 5 weeks of each diet, the kinetics of VLDL-TG were determined over a 48-h period after the injection of [3H]glycerol. The fish oil diet reduced the VLDL-TG synthetic rate from 23 +/- 14.3 (mean +/- SD) to 12.6 +/- 7.5 mg/h per kg ideal weight (P less than 0.005) and increased the fractional catabolic rate (FCR) for VLDL-TG from 0.23 +/- 0.12 to 0.38 +/- 0.16 h -1 (P less than 0.005). At the same time, there was a 66% reduction of plasma triglyceride levels, resulting largely from a 78% decrease in VLDL-TG levels (398 +/- 317 to 87 +/- 77 mg/dl; P less than 0.005). There was a strong correlation (r = 0.83; P less than 0.01) between the change in synthetic rates and pool sizes, but there was no correlation (r = 0.24; NS) between changes in FCRs and pool sizes. The VLDL cholesterol: triglyceride ratio increased during the n-3 diet suggesting that smaller VLDL particles were present. These particles would be expected to leave the VLDL fraction more rapidly than larger particles producing a higher FCR. We conclude that the hypotriglyceridemic effect of fish oil appears to be caused primarily by an inhibition of very low density lipoprotein-triglyceride synthesis, but an additional, independent effect upon VLDL catabolism cannot be ruled out.

Highlights

  • Dietary n-3 fatty acids (FAs) found in fish oils markedly lower plasma triglyceride (TG) and very low density lipoprotein (VLDL) levels in both normal and hypertriglyceridemic subjects

  • These particles would be expected to leave the VLDL fraction more rapidly than larger particles producing a higher fractional catabolic rate (FCR). m We conclude that the hypotriglyceridemic effect of fish oil appears to be caused primarily by an inhibition of very low density lipoprotein-triglyceride synthesis, but an additional, independent effect upon VLDL catabolsim cannot be ruled out.-Harris, W

  • The purpose of the current study was to examine the effects of dietary n-3 fatty acids on VLDL triglyceride kinetics in a relatively larger number of individuals who were given fish oil during the turnover study

Read more

Summary

Introduction

Dietary n-3 fatty acids (FAs) found in fish oils markedly lower plasma triglyceride (TG) and very low density lipoprotein (VLDL) levels in both normal and hypertriglyceridemic subjects. The kinetics of VLDL triglyceride in humans given n-3 fatty acids have been reported in three earlier trials [13,14,15] These studies were limited by either the failure to give n-3 fatty acids during the actual kinetic studies, the lack of a control period, dietary inconsistencies among subjects, or by examining very small numbers of patients with rare types of secondary hyperlipidemia. The purpose of the current study was to examine the effects of dietary n-3 fatty acids on VLDL triglyceride kinetics in a relatively larger number of individuals who were given fish oil during the turnover study. Subjects with widely varying baseline triglyceride levels were purposely chosen in order to determine whether the mechanism(s) of triglyceride lowering by fish oil was influenced by the magnitude of the hypertriglyceridemia

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.