Abstract

Fish fillet is easily spoiled during storage. Antimicrobial edible coating of gelatin extracted from fish skins and bones and tea polyphenol (TP) was developed to inhibit the spoilage of fish fillet during cold storage. For coating containing 0.4 % TP and 1.2 % gelatin, the pH only slightly increased from 6.17 at day 0 to 6.32 at day 17 of cold storage, while the pH of control coating increased to 6.87 at day 17. Atomic force spectrometry was used to analyse the nanostructure of myofibril, which is the major component of fish muscle. The results showed that the length of myofibril from 0.4 % TP and 1.2 % gelatin group was greater than 15 μm, while the diameter and height were 3.38 and 0.59 μm, respectively, which exhibited the most intact nanostructure after 17 days of cold storage. Meanwhile, matrix-assisted laser desorption–ionisation–time-of-flight mass spectrometry result showed that TP delayed the degradation of myosin light chain 3 and troponin T in myofibril. Gas chromatography–mass spectrometry of volatile organic compounds (VOCs) also showed that 0.4 % TP and 1.2 % gelatin coating group had minimal production of spoilage markers, such as 1-octen-3-ol, 2-methyl propanoic acid and dimethyl sulfide. The microbial analysis showed that the aerobic mesophilic/psychrotrophic count, yeasts and moulds of 0.4 % TP and 1.2 % gelatin group were significantly lower than the control group. Therefore, 0.4 % TP and 1.2 % gelatin coating showed the best antimicrobial effect and can be used to maintain the nanostructure of fish fillet and prevent the spoilage during cold storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.