Abstract
A direct-forcing fictitious domain (DFFD) method is used to perform fully resolved numerical simulations of turbulent channel flows laden with large neutrally buoyant particles. The effects of the particles on the turbulence (including the mean velocity, the root mean square (RMS) of the velocity fluctuation, the probability density function (PDF) of the velocity, and the vortex structures) at a friction Reynolds number of 395 are investigated. The results show that the drag-reduction effect caused by finite-size spherical particles at low particle volumes is negligibly small. The particle effects on the RMS velocities at Reτ=395 are significantly smaller than those at Reτ=180, despite qualitatively the same effects, i.e., the presence of particles decreases the maximum streamwise RMS velocity near the wall via weakening the large-scale streamwise vortices, and increases the transverse and spanwise RMS velocities in the vicinity of the wall by inducing smaller-scale vortices. The effects of the particles on the PDFs of the fluid fluctuating velocities normalized with the RMS velocities are small, regardless of the particle size, the particle volume fraction, and the Reynolds number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.