Abstract

The negative impacts on human health that accompany inhalation of atmospheric particles are documented in numerous epidemiologic studies, but the effect of specific chemical properties of the particles is generally unknown. We developed and employed technology for generating inhalable aerosols of carbonaceous air pollution particles that have specific physical and chemical properties. We find that inhaling particles with greater unpaired electron spin (free radical) densities stimulates greater lung inflammatory and oxidative stress responses. Cultured alveolar macrophages take up more particles of greater free radical content, develop mitochondrial abnormalities, and release more leukotriene B(4) (LTB(4)) than alveolar macrophages exposed to lesser free-radical-containing particles in vitro. Mice exposed to high free radical particles in vivo also develop mitochondrial abnormalities in alveolar macrophages and increased oxidative stress, which is reflected by increases in lung nitrotyrosine staining and lung lavage nitrogen oxide levels compared with those of lesser free radical density. These results provide insight for the unexplained geographic differences and have implications for fossil fuel combustion conditions and the impact of fine particles on health and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.