Abstract

Epitaxial Ni–Mn–Ga magnetic shape memory films with varied thickness and variable stoichiometry were prepared by magnetron sputtering on MgO(001) substrates and investigated by using x-ray diffraction (XRD), scanning tunneling microscopy (STM) and scanning electron microscopy (SEM). The results demonstrate that the structure of the films is either a non-modulated martensite or a seven-layer-modulated martensite. At small film thicknesses, we observe a preferential alignment of the {110} twin planes titled 45° from the substrate surface, which gives rise to the surface corrugation, whereas at large thicknesses, twin planes align additionally along the perpendicular planes. The biaxial tensile stress due to the film–substrate lattice mismatch is shown to have an important role in the selection of the possible twinning planes. An exponential relation between the stress and the film thickness is identified. In contrast, the magnetic properties of the films are found to be independent of the stress. A resistance maximum is measured close to the Curie temperature, which can be attributed to the relaxation of the lattice distortion induced by magnetoelastic coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.