Abstract
Recent experimental studies have documented that functional gap junctions form between fibroblasts and myocytes, raising the possibility that fibroblasts play roles in cardiac electrophysiology that extend beyond acting as passive electrical insulators. The purpose of this study was to use computational models to investigate how fibroblasts may affect cardiac conduction and vulnerability to reentry under different fibroblast-myocyte coupling conditions and tissue structures. Computational models of two-dimensional tissue with fibroblast-myocyte coupling were developed and numerically simulated. Myocytes were modeled by the phase I of the Luo-Rudy model, and fibroblasts were modeled by a passive model. Besides slowing conduction by cardiomyocyte decoupling and electrotonic loading, fibroblast coupling to myocytes elevates myocyte resting membrane potential, causing conduction velocity to first increase and then decrease as fibroblast content increases, until conduction failure occurs. Fibroblast-myocyte coupling can also enhance conduction by connecting uncoupled myocytes. These competing effects of fibroblasts on conduction give rise to different conduction patterns under different fibroblast-myocyte coupling conditions and tissue structures. Elevation of myocyte resting potential due to fibroblast-myocyte coupling slows sodium channel recovery, which extends postrepolarization refractoriness. Owing to this prolongation of the myocyte refractory period, reentry was more readily induced by a premature stimulation in heterogeneous tissue models when fibroblasts were electrotonically coupled to myocytes compared with uncoupled fibroblasts acting as pure passive electrical insulators. Fibroblasts affect cardiac conduction by acting as obstacles or by creating electrotonic loading and elevating myocyte resting potential. Functional fibroblast-myocyte coupling prolongs the myocyte refractory period, which may facilitate induction of reentry in cardiac tissue with fibrosis.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.