Abstract

Nanomaterial additives have been broadly used in cement and concrete-based sensors to measure the stress and strain in the structure. Most of the studies focused on measuring the resistivity of sensors with Direct Current (DC) or relatively low-frequency. In this work, the impedance responses of enhanced Carbon Nano-Fiber Aggregates (CNFAs) at different frequencies are rigorously studied and utilized as a tool for real-time structural health monitoring (SHM). The CNFA impedance measurements at different measurement frequencies provide an extra dimension (frequency dimension) to allow the characterization of different phenomena and multimodal measurements simultaneously. First, a comprehensive physical model is established to understand the frequency responses of the CNFA impedance. Second, COMSOL Multiphysics is used to simulate the frequency responses of the CNFA impedance, which provides more insights into the electric field and current density distribution. The impedance of CNFAs decreased with the increased dosage of carbon nanofibers (CNFs). Third, experimental studies are reported in detail. The electrical impedance variation (EZV) of the CNFA in parallel orientation is 151% higher than that of perpendicular orientation at the frequency of 2612 Hz and uniaxial compression stress of 4.65 MPa. The strain-EZV curve obtained from the response spectrum is linear for frequencies ranging from 98 Hz to 463.9 kHz. The strain-EZV curve for 5625 Hz has a linear fit with the gauge factor of 147.78. At 1000 Hz, the CNFA exhibited a repeatable behavior up to 9.35 MPa and detection limit up to the stress of 18.62 MPa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.