Abstract

BackgroundStone pine (Pinus pinea), a drought-resistant species, has significant socio-economic benefits and increasing interest for the establishment of productive plantations in several countries, especially in a climate change context. Monitoring hourly stem diameter variations contributes to the understanding of the tree-growth response to changes in environmental conditions and management. By monitoring the diameter expansion of tree stems, high-resolution band dendrometers were used to study the development of adult trees growing in a semi-arid coastal environment of central Chile under fertilized and non-fertilized soil conditions through the span of a year.ResultsShort cycles (< 21 h) were few in fertilized and non-fertilized trees (6 and 4, respectively), whereas long cycles (> 28 h) occurred at a higher frequency in fertilized trees (16 vs 6). Most of the circadian cycles were regular (24 ± 3 h). The longest cycle duration (59 h) was observed in fertilized trees during spring. In all seasons, each phase of the circadian cycle, especially during the stem diameter increment phase (P3, irreversible growth), started earlier in fertilized than in control trees. P3 duration was significantly longer in fertilized than in control trees in springtime. The maximum shrinkage (P1) was observed in summer for both treatments. Stem diameter increased faster in fertilized than in control trees throughout the year, with the highest accumulation occurring in spring and the lowest in autumn. The daily variability pattern showed lower growth under high temperature across seasons.ConclusionsThis study highlights the importance of fertilization in enhancing stone pine diameter growth. This cultural practice should be further explored to contribute to the mitigation of climate change effects in semi-arid environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call