Abstract

Short rotation woody biofuel plantations on reclaimed surface mines in Appalachia can diversify domestic energy supplies and facilitate the reforestation of these disturbed lands. This study examined growth, survival, biomass accumulation and allocation, and nitrogen concentrations following two growing seasons in American sycamore (Platanus occidentalis L.) and black locust (Robinia pseudoacacia L.) seedlings receiving irrigation, granular fertilization, and irrigation+fertilization compared with untreated controls. Fertilization increased basal diameter, height, and stem mass of American sycamore following two growing seasons. Increased stem production was attributed to accelerated development and not shifts in biomass allocation due to treatment. Irrigation and irrigation+fertilization treatments did not enhance growth or biomass accumulation of American sycamore. Similarly, black locust basal diameter, height, and stem mass did not differ among the treatments. Browse surveys showed that more than 76% of black locust seedlings experienced arrested or retrogressed growth due to browse; less than 3% of American sycamores were browsed. This intensive browse by ungulates, likely including reintroduced elk, may have affected growth differences among species and confounded the effects of treatments on black locust. Survival was unaffected by treatment in both species, but mean survival was greatest in American sycamore (80%) compared to black locust (58%). Per tree total nitrogen uptake was highest in fertilized American sycamore (7.9g) and lowest in irrigated American sycamore (0.9g). The results of our study suggest that granular fertilizer applications can accelerate seedling growth on reclaimed surface mines in the Appalachian region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.