Abstract
Cows undergoing a negative energy balance (NEB) often experience a state of immunosuppression and are at greater risk of infectious diseases. The present study aimed to evaluate the impact of a folic acid and vitamin B12 supplement and feed restriction on several immune parameters. Sixteen cows at 45 ± 3 days in milk were assigned to 8 blocks of 2 cows each according to each cow’s milk production in the previous week, and within each block, the cows randomly received weekly intramuscular injections of either saline or 320 mg of folic acid and 10 mg of vitamin B12 for 5 weeks. During week 5, the cows were fed 75% of their ad libitum intake for 4 days. Blood samples were taken before the beginning of the experiment, just before feed restriction and after 3 days of feed restriction, in order to evaluate blood cell populations, the phagocytosis capacity and oxidative burst of polymorphonuclear leukocytes (PMNs), the proliferation of peripheral blood mononuclear cells (PBMCs) and concentrations of non-esterified fatty acids (NEFAs) and β-hydroxybutyrate. The vitamin supplement did not affect any of the tested variables except milk fat and lactose content. Feed restriction reduced milk production and increased the concentration of NEFAs. Feed restriction did not affect blood cell populations but did reduce the percentage of PMN positive for oxidative burst after stimulation with phorbol 12-myristate 13-acetate. The proliferation of PBMCs was reduced when the cell culture medium was supplemented with sera collected during the feed restriction. In conclusion, feed restriction affected the functions of PMN and PBMC and this effect was not prevented by the folic acid and vitamin B12 supplement. These results support the hypothesis that the greater risk of infectious diseases in cows experiencing a NEB is related to impaired immune cell functions by high circulating concentration of NEFAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.