Abstract

The effects on sulfur removal and membrane fouling resulting from FeCl(3) addition to an anaerobic fluidized membrane bioreactor (AFMBR) in a staged AFMBR (SAF-MBR) was investigated. Total sulfur removal in the SAF-MBR was 42-59% without FeCl(3) addition, but increased to 87-95% with FeCl(3) addition. Sulfide removal in the AFMBR increased to 90% with addition of FeCl(3) at a molar Fe(3+)/S ratio of 0.54 and to 95% when the ratio was increased to 0.95. Effluent sulfide concentration then decreased to 0.3-0.6 mg/L. Phosphate removals were only 19 and 37% with the above added FeCl(3) ratios, indicating that iron removed sulfide more readily than phosphate. Neither chemical oxygen demand nor biochemical oxygen demand removal efficiencies were affected by the addition of FeCl(3). When the AFMBR permeate became exposed to air, light brown particles were formed from effluent Fe(2+) oxidation to Fe(3+). FeCl(3) addition, while beneficial for sulfide removal, did increase the membrane fouling rate due to the deposition of inorganic precipitates in the membrane pores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call