Abstract
Fecal microbiota transplantation (FMT) has been shown to improve gut dysbiosis in dogs; however, it has not completely been understood in police dogs. This study aimed to investigate the effects of FMT on performance and gut microflora in Kunming police dogs. Twenty Wolf Cyan dogs were randomly assigned to receive physiological saline or fecal suspension at low, medium, or high doses through oral gavage for 14days. Growth performance, police performance, serum biochemical profiling, and gut microflora were determined 2-week post-FMT. Dogs after FMT treatment were also subjected to an hour road transportation and then were evaluated for serum stress indicators. Overall, FMT enhanced the growth performance and alleviated diarrhea rate in Kunming dogs with the greatest effects occurring in the low dose FMT (KML) group. The improvement of FMT on police performance was also determined. These above alterations were accompanied by changed serum biochemical parameters as indicated by elevated total protein and albumin and reduced total cholesterol and glycerol. Furthermore, the serum stress indicators after road transportation in dog post-FMT significantly decreased. Increased bacterial diversity and modified bacterial composition were found in the feces of dogs receiving FMT. The fecal samples from FMT dogs were characterized by higher abundances of the genera Lactobacillus, Prevotella, and Fusobacterium and lower concentrations of Cetobacterium, Allobaculum, Bifidobacterium, and Streptococcus. The present study supports a potential benefit of FMT on police performance in Kunming dogs. KEY POINTS: • FMT improves the growth performance and reduces diarrhea rates in Kunming police dogs. • FMT alleviates the serum stress profiles after road transportation in Kunming police dogs. • FMT modifies the gut microbiota composition of Kunming police dogs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.