Abstract
Abscisic acid-, stress-, and ripening-induced (ASR) protein play important roles in protecting plants from abiotic stress. The functions of some ASR proteins are known to be modulated by binding to metal ions. In this study, we demonstrated that the non-tagged full-length soybean (Glycine max) ASR protein (GmASR) can bind Fe(3+), Ni(2+), Cu(2+), and Zn(2+). The direct binding properties of GmASR to Fe(3+) and Zn(2+) were further confirmed by intrinsic fluorescence assays. The GmASR protein was found to have three Fe(3+) binding sites but only two Zn(2+) binding sites. Natively disordered in aqueous solution, GmASR remained disordered in the presence of Fe(3+), but was found to aggregate in the presence of Zn(2+). The aggregated GmASR protein was partially resolubilized after Zn(2+) was chelated by EDTA. GmASR exhibited Fe(3+)-binding-dependent antioxidant activity in vitro. We speculate that GmASR thus protects against oxidation damage by buffering metal ions, thus alleviating metal toxicity in plant cells under stressed conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.