Abstract

As an aspect of intelligent clothing, e-textile sensors can flexibly sense and transmit information about human bodies and environments. However, difficulties relating to their technology and the variation in textile materials employed in their manufacture still limit their ability to analyze and be applied. The authors’ previous publication deployed a pressure sensor with warp-knitted spacer fabrics, wet-knitted fabrics, Ag-yarns, and Fe-yarns. An equivalent circuit analyzed the resistance behavior with some effects of the Ag-coated twisted yarns. In the present paper, the authors continue to evaluate the correlation model R-ε and the effects of the Fe staple-fiber spun yarns in detail. Together, the two studies provide an extensive understanding of the textile-related elements that affect pressure sensors. In addition, the process and the analysis (correlation model) could bring the textile sensors here developed close to the manufacturing stage, particularly for high precision/adjustable applications. We also develop a simple touch sensor matrix to demonstrate the potential of the sensor and the analyzing method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call