Abstract

The solidification microstructures formed in a model 6082 alloy with 0.2–1.0 wt % Fe were examined under different cooling rates and the effects of 0.5 wt % Mn and Al–5Ti–1B grain refiner addition investigated. The results were compared against Thermo-Calc, differential scanning calorimetry (DSC) and cooling curve analysis. Fe promotes primary-Al grain refinement from growth restriction and constitutional undercooling effects but increases detrimental β–(Al9Fe2Si2) intermetallic. Mn contributes to primary-Al grain refinement from growth restriction and promotes the formation of α–Al15(Fe,Mn)3Si2 at the expense of increased intermetallic content. Al–5Ti–1B inoculation not only produces the strongest refinement of primary-Al grains but also refines the Fe-intermetallics by enhancing their nucleation and restricting their growth volume in the interdendritic liquid pockets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.